
Wireless Testbench™
Getting Started Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Wireless Testbench™ Getting Started Guide
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Product Overview
1

Wireless Testbench Product Description . 1-2

About Wireless Testbench Applications Using SDR
2

Wireless Testbench Reference Applications on SDR 2-2

Supported Radio Devices . 2-3

Tutorials
3

Capture from Frequency Band . 3-2

Transmit Waveform . 3-5

Loopback Transmit and Capture . 3-8

Triggered Capture Using Preamble Detection . 3-11

iii

Contents

Product Overview

1

Wireless Testbench Product Description
Explore and test wireless reference applications in real time on SDR hardware

Wireless Testbench provides reference applications that are ready to run on off-the-shelf software-
defined radio (SDR) hardware such as USRP™ using over-the-air signals for high-speed data transmit,
capture, and spectrum monitoring.

Using MATLAB® command line instructions, you can connect to supported SDR hardware, configure
and execute prebuilt FPGA bitstreams as reference applications, and perform real-time
measurements.

Using the configurable preamble detector, you can define a trigger to capture only the signal of
interest for offline analysis in MATLAB.

1 Product Overview

1-2

About Wireless Testbench Applications
Using SDR

2

Wireless Testbench Reference Applications on SDR
Wireless Testbench reference applications are prebuilt hardware images that enable you to explore
wireless applications for software-defined-radio (SDR) hardware by using MATLAB objects. This
diagram is a high-level overview of how Wireless Testbench reference application objects integrate
SDR capabilities of supported radios.

Using a Wireless Testbench reference application object, you can configure the prebuilt hardware
image to transmit, capture, or detect wireless signals and write your application code for
experimenting and testing.

Wireless Testbench Reference Application
Object

Description

basebandReceiver Configure SDR as baseband receiver
basebandTransceiver Configure SDR as baseband transceiver
basebandTransmitter Configure SDR as baseband transmitter
preambleDetector Configure SDR as preamble detector

See Also

More About
• “Supported Radio Devices” on page 2-3

2 About Wireless Testbench Applications Using SDR

2-2

Supported Radio Devices
Wireless Testbench Support Package for NI™ USRP Radios provides support for these radios.

USRP Networked Series

• USRP N310
• USRP N320
• USRP N321

See Also

More About
• “Install Support Package for NI USRP Radios”
• “Connect and Set Up NI USRP Radios”

 Supported Radio Devices

2-3

Tutorials

3

Capture from Frequency Band
This example shows how to use a software-defined radio (SDR) to capture data from a specified
frequency band. The example then plots the frequency spectrum of the captured data.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

radios = radioConfigurations;

Specify the name of a saved radio setup configuration to use with this example.

radioName = ;

Specify Frequency Band

Specify the start and the end of the frequency band. By default, this example captures the 87.5-108
MHz frequency band, typically allocated to FM radio.

frequencyBand.Start = ;

frequencyBand.End = ;
frequencyBand.Width = frequencyBand.End-frequencyBand.Start;
frequencyBand.MidPoint = frequencyBand.Start + frequencyBand.Width/2;

Configure Baseband Receiver

Create a baseband receiver object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

if ~exist("bbrx","var")
 bbrx = basebandReceiver(radioName);
end

To capture the full width of the frequency band:

• Set the SampleRate property to a value that is greater than or equal to the width of the
frequency band.

• Set the CenterFrequency property to the value that corresponds to the middle of the frequency
band.

Set the RadioGain property according to the local signal strength.

bbrx.SampleRate = ;
bbrx.CenterFrequency = frequencyBand.MidPoint;

bbrx.RadioGain = ;

bbrx.Antennas = ;

3 Tutorials

3-2

Capture IQ Data

To capture IQ data from the the specified frequency band, call the capture function on the baseband
receiver object. Specify the length of the capture.

captureLength = milliseconds();
data = capture(bbrx,captureLength);

Plot Spectrum of Captured Data

Create a dsp.SpectrumAnalyzer object. Set the sample rate of the spectrum analyzer object to the
sample rate of the baseband receiver object. Plot the spectrum and spectrogram of the captured data.

PlotPowerLimits = [,];

spectrumScope = dsp.SpectrumAnalyzer;
spectrumScope.SampleRate = bbrx.SampleRate;
spectrumScope.FrequencyOffset = bbrx.CenterFrequency;
spectrumScope.ViewType = "Spectrum and spectrogram";
spectrumScope.TimeSpanSource = "Property";
spectrumScope.TimeSpan = seconds(captureLength);
spectrumScope.YLimits = PlotPowerLimits;
spectrumScope.ColorLimits = PlotPowerLimits;
spectrumScope.SpectrumUnits = "dBFS";
spectrumScope.FullScaleSource = "Property";
spectrumScope.FullScale = double(intmax('int16'));
spectrumScope(data);
release(spectrumScope);

 Capture from Frequency Band

3-3

See Also
Functions
radioConfigurations

Objects
basebandReceiver

More About
• “Capture from Frequency Band with Multiple Antennas”
• “Supported Radio Devices” on page 2-3

3 Tutorials

3-4

Transmit Waveform
This example shows how to use a software-defined radio (SDR) to transmit a custom generated
wireless waveform.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

radios = radioConfigurations;

Specify the name of a saved radio setup configuration to use with this example.

radioName = ;

Specify Wireless Waveform

Use the attached QAM-4-GeneratedWaveform.mat file to specify the transmit waveform. The
waveStruct structure contains a QAM-4 waveform that is generated by using the Wireless
Waveform Generator app.

load("QAM-4-GeneratedWaveform.mat")

Configure Baseband Transmitter

Create a baseband transmitter object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

if ~exist("bbtx","var")
 bbtx = basebandTransmitter(radioName);
end

Configure the baseband transmitter object according to the parameters of the wireless waveform.

• Set the SampleRate property to the sample rate of the generated waveform.
• Set the CenterFrequency property to a value in the frequency spectrum indicating the position

of the waveform transmission.

bbtx.SampleRate = ;

bbtx.CenterFrequency = ;

Set the RadioGain property according to the local wireless channel. Specify the transmit antennas.

bbtx.RadioGain = ;

bbtx.Antennas = ;

Plot Wireless Waveform

Plot the first hundred samples of the wireless waveform.

 Transmit Waveform

3-5

waveform = ;
figure();
subplot(2,1,1); plot(real(double(waveform(1:100))));
title("Real Part of Waveform")
xlabel("Samples"); ylabel("Amplitude");
subplot(2,1,2); plot(imag(double(waveform(1:100))),color='r');
title("Imaginary Part of Waveform")
xlabel("Samples"); ylabel("Amplitude");

Transmit Wireless Waveform

Call the transmit function on the baseband transmitter object. Specify the type of transmission.

transmit(bbtx,waveform,);

End Transmission

To end a continuous transmission, call the stopTransmission function on the baseband transmitter
object.

3 Tutorials

3-6

stopTransmission(bbtx);

See Also
Functions
radioConfigurations

Objects
basebandTransmitter

More About
• “Capture from Frequency Band” on page 3-2
• “Supported Radio Devices” on page 2-3

 Transmit Waveform

3-7

Loopback Transmit and Capture
This example shows how to use a software-defined radio (SDR) to transmit and capture a custom
wireless waveform over the air.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

radios = radioConfigurations;

Specify the name of a saved radio setup configuration to use with this example.

radioName = ;

Specify Wireless Waveform

Use the attached TestTone.mat file to specify the transmit waveform. The waveStruct structure
contains a complex sine tone that is generated by using the Wireless Waveform Generator app.

load("TestTone.mat")

Configure Baseband Transceiver

Create a baseband transceiver object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

if ~exist("bbtrx","var")
 bbtrx = basebandTransceiver(radioName);
end

Configure the baseband transceiver object using the parameters of the wireless waveform.

• Set the SampleRate property to the sample rate of the generated waveform.
• Set the CenterFrequency property to a value in the frequency spectrum indicating the position

of the waveform transmission.

bbtrx.SampleRate = ;

bbtrx.TransmitCenterFrequency = ;
bbtrx.CaptureCenterFrequency = bbtrx.TransmitCenterFrequency;

Set the TransmitRadioGain and CaptureRadioGain properties according to the local wireless
channel. Specify the transmit and capture antennas.

bbtrx.TransmitRadioGain = ;

bbtrx.CaptureRadioGain = ;

bbtrx.TransmitAntennas = ;

bbtrx.CaptureAntennas = ;

3 Tutorials

3-8

Transmit Wireless Waveform

Call the transmit function on the baseband transceiver object. Specify a continuous transmission.

transmit(bbtrx, ,"continuous");

Capture IQ Data

To capture the transmitted waveform, call the capture function on the baseband receiver object.
Specify the length of the capture.

pause(1)

captureLength = milliseconds();
data = capture(bbtrx,captureLength);

End Transmission

To end the continuous transmission, call the stopTransmission function on the baseband
transceiver object.

stopTransmission(bbtrx);

Plot Spectrum of Captured Waveform

Create a dsp.SpectrumAnalyzer object. Set the sample rate of the spectrum analyzer object to the
sample rate of the baseband transceiver object. Plot the spectrum of the captured data.

PlotPowerLimits = [,];

spectrumScope = dsp.SpectrumAnalyzer;
spectrumScope.SampleRate = bbtrx.SampleRate;
spectrumScope.FrequencyOffset = bbtrx.CaptureCenterFrequency;
spectrumScope.YLimits = PlotPowerLimits;
spectrumScope.SpectrumUnits = "dBFS";
spectrumScope.FullScaleSource = "Property";
spectrumScope.FullScale = double(intmax('int16'));
spectrumScope(data);
release(spectrumScope);

 Loopback Transmit and Capture

3-9

See Also
Functions
radioConfigurations

Objects
basebandTransceiver

More About
• “Transmit Waveform” on page 3-5
• “Supported Radio Devices” on page 2-3

3 Tutorials

3-10

Triggered Capture Using Preamble Detection
This example shows how to use a software-defined-radio (SDR) to capture data from the air using
preamble detection. The example also shows how to use the transmit capabilities of the same radio to
loop back a test waveform.

Introduction

The example demonstrates these steps.

1 Generate a waveform containing a preamble.
2 Configure the preamble detector to detect the preamble sequence.
3 Use the plotThreshold function to calibrate a fixed or adaptive threshold and capture data.
4 Explore trigger offset.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios”.

radios = radioConfigurations;

Specify the name of a saved radio setup configuration to use with this example.

radioName = ;

Generate Transmission Waveform

Create a transmission waveform containing a Zadoff-Chu preamble sequence. To enable
straightforward demonstration of the preamble detection workflow, concatenate zeros before and
after the preamble.

Generate a preamble sequence of length 137 by using 38th root of the Zadoff-Chu sequence and
normalize. Concatenate with zeros.

preamble = zadoffChuSeq(38,137);
preamble = preamble/norm(preamble,2);
prePadLen = 2501;
postPadLen = 2500;
headSignal = complex(zeros(prePadLen,1),zeros(prePadLen,1));
rearSignal = complex(zeros(postPadLen,1),zeros(postPadLen,1));
inputSignal = [headSignal; preamble; rearSignal];

Plot transmission waveform.

figure();
subplot(2,1,1); plot(real(inputSignal));
subtitle("Real Part");
xlabel("Samples");
ylabel("Amplitude");
title("Waveform with Preamble");
subplot(2,1,2);
plot(imag(inputSignal),Color='r');
subtitle("Imaginary Part");

 Triggered Capture Using Preamble Detection

3-11

xlabel("Samples");
ylabel("Amplitude");

Configure Preamble Detector

Create a preamble detector object with the specified radio. To speed up the execution time of this
example upon subsequent runs, reuse the workspace object from the first run of the example.

if ~exist("pd","var")
 pd = preambleDetector(radioName);
end

Set the RF properties of the preamble detector. Set the RadioGain property according to the local
wireless channel.

pd.SampleRate = ;

pd.CenterFrequency = ;

pd.Antennas = ;

pd.RadioGain = ; % Increase if signal levels are low.

Configure the preamble sequence for preamble detection.

pd.Preamble = preamble;

Set the capture data type to the data type of the generated transmission waveform.

3 Tutorials

3-12

pd.CaptureDataType = "double";

Configure Transmission Variables

Set the transmit gain and transmit antenna values. Set the transmit gain variable according to the
local wireless channel.

txGain = ; % Increase if signal levels are low.

txAntenna = ;

Detect Preamble Using Fixed Threshold and Capture Data

Data capture is triggered when the correlator output is greater than the fixed threshold. By setting
the fixed threshold to 0, you can analyze the behavior of the preamble detector and understand how
to set the fixed threshold value for successful detection.

Set the preamble detector to use fixed threshold. To set the threshold method, stop any ongoing
transmission.

stopTransmission(pd);
pd.ThresholdMethod = "fixed";

Set the fixed threshold initially to 0.

pd.FixedThreshold = 0;

Transmit the test waveform.

transmit(pd,inputSignal,"continuous",TransmitGain=txGain, ...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);

Use the plotThreshold function to analyze the behavior of the detector by plotting 10,000 samples.
Because the fixed threshold value is 0, all samples from the correlator output are possible trigger
points. Check the correlator output values at the peak trigger points. Because the sampling phase
determines the quality of the correlator peak, run the plotThreshold function multiple times to see
how the trigger points change.

plotThreshold(pd,10e3);

 Triggered Capture Using Preamble Detection

3-13

Choose a threshold value that is below any of the trigger point values. Plot the threshold information
again and adjust the fixed threshold until the trigger points appear only on the correlator output
peak.

pd.FixedThreshold = ;
plotThreshold(pd,10e3);

3 Tutorials

3-14

Once the threshold is set, capture data.

[data, ~, ~, status] = capture(pd, 10e3, seconds(1));
plotCapturedData(data,status);

 Triggered Capture Using Preamble Detection

3-15

Detect Preamble Using Adaptive Threshold and Capture Data

As an alternative to the fixed threshold, data capture can be triggered when the correlator output is
greater than the adaptive threshold, which dynamically varies with the input signal power. By setting
the adaptive threshold gain and offset to 0, you can analyze the behavior of the preamble detector
and understand how to configure the adaptive threshold for successful detection.

Set the preamble detector to use adaptive threshold. To set the threshold method, stop any ongoing
transmission.

stopTransmission(pd);
pd.ThresholdMethod = 'adaptive';

Set the adaptive threshold gain and offset initially to 0.

pd.AdaptiveThresholdGain = 0;
pd.AdaptiveThresholdOffset = 0;

Transmit the test waveform.

transmit(pd,inputSignal,"continuous",TransmitGain=txGain, ...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);

Use the plotThreshold function to analyze the behavior of the detector by plotting 10,000 samples.
Check the correlator output values at the peak trigger points and run the plotThreshold function
multiple times if necessary.

plotThreshold(pd,10e3);

3 Tutorials

3-16

To remove all the trigger points from the bottom of the plot, set the adaptive threshold offset to a
value that is above the noise floor. Adjust the adaptive threshold gain and plot the threshold
information repeatedly until the correlator output is greater than the adaptive threshold.

pd.AdaptiveThresholdOffset = ;

pd.AdaptiveThresholdGain = ;
plotThreshold(pd,10e3);

 Triggered Capture Using Preamble Detection

3-17

Once the threshold is configured, capture data.

[data, ~, ~, status] = capture(pd, 10e3, seconds(1));
plotCapturedData(data,status);

3 Tutorials

3-18

Set Trigger Offset to Include Preamble in Captured Data

To capture the preamble sequence, set the trigger offset to the length of the preamble. To set the
trigger offset, stop any ongoing transmission.

stopTransmission(pd);

pd.TriggerOffset = ;

Transmit the test waveform and capture data.

transmit(pd, inputSignal,"continuous",TransmitGain=txGain,...
 TransmitCenterFrequency=pd.CenterFrequency,TransmitAntennas=txAntenna);
% Detect and capture 10,000 samples, with a 1 second timeout
[data, ~, ~, status] = capture(pd, 10e3, seconds(1));
plotCapturedData(data,status);

 Triggered Capture Using Preamble Detection

3-19

End Transmission

To end the continuous transmission, call the stopTransmission function on the preamble detector
object.

stopTransmission(pd);

Local Functions
function plotCapturedData(data,status)
 if status % If detection is successful, plot data
 figure();
 subplot(2,1,1); plot(real(double(data)));
 title("Real Part of Captured Signal")
 xlabel("Samples"); ylabel("Amplitude");
 subplot(2,1,2); plot(imag(double(data)),color='r');
 title("Imaginary Part of Captured Signal")
 xlabel("Samples"); ylabel("Amplitude");
 else
 disp("Detection failed.")
 end
end

See Also
Functions
radioConfigurations

3 Tutorials

3-20

Objects
preambleDetector

More About
• “Capture from Frequency Band” on page 3-2
• “Supported Radio Devices” on page 2-3

 Triggered Capture Using Preamble Detection

3-21

	Product Overview
	Wireless Testbench Product Description

	About Wireless Testbench Applications Using SDR
	Wireless Testbench Reference Applications on SDR
	Supported Radio Devices

	Tutorials
	Capture from Frequency Band
	Transmit Waveform
	Loopback Transmit and Capture
	Triggered Capture Using Preamble Detection

